The action of \(G\) on \(A\) can be represented by a table where the rows are elements of \(G\) and the columns are elements of \(A\). For example, here is the action of \(D_6\) on the three vertices of a triangle:
If we highlight all cells \((g,a)\) where \(g \cdot a = a\), then we get the following table:
Notice that the sum \(\sum_{g \in G} \chi(g)\) corresponds to be a horizontal summation of the highlighted squares, while \(\sum_{a \in A} \left|G_a\right|\) corresponds to a vertical summation.
Lastly, \(\sum_{a \in A} \left|G_a\right| = \sum_{\mathcal{O}} \sum_{a \in \mathcal{O}} \left|G_a\right| = \sum_{\mathcal{O}} \sum_{a \in \mathcal{O}} \frac{\left|G\right|}{\left|\mathcal{O}\right|} = n\left|G\right|\).
No comments:
Post a Comment